Coupling 3D Monte Carlo light transport in optically heterogeneous tissues to photoacoustic signal generation
نویسنده
چکیده
The generation of photoacoustic signals for imaging objects embedded within tissues is dependent on how well light can penetrate to and deposit energy within an optically absorbing object, such as a blood vessel. This report couples a 3D Monte Carlo simulation of light transport to stress wave generation to predict the acoustic signals received by a detector at the tissue surface. The Monte Carlo simulation allows modeling of optically heterogeneous tissues, and a simple MATLAB™ acoustic algorithm predicts signals reaching a surface detector. An example simulation considers a skin with a pigmented epidermis, a dermis with a background blood perfusion, and a 500-μm-dia. blood vessel centered at a 1-mm depth in the skin. The simulation yields acoustic signals received by a surface detector, which are generated by a pulsed 532-nm laser exposure before and after inserting the blood vessel. A MATLAB™ version of the acoustic algorithm and a link to the 3D Monte Carlo website are provided.
منابع مشابه
Design Study on Photoacoustic Probe to Detect Prostate Cancer using 3D Monte Carlo Simulation and Finite Element Method
Purpose In this work, we propose an alternative photoacoustic probe based on transurethral laser illumination to a conventional transrectal photoacoustic imaging system suffering from a high optical absorption at a rectal wall and its surrounding tissues. Methods We validate improved performance of the proposed scheme using 3-dimensional prostate model and analytical calculations such as Monte ...
متن کاملEvaluation of finite element based simulation model of photoacoustics in biological tissues
A finite element (FE)-based simulation model for photoacoustic (PA) has been developed incorporating light propagation, PA signal generation, and sound wave propagation in soft tissues using a commercial FE simulation package, COMSOL Multiphysics. The developed simulation model is evaluated by comparing with other known simulation models such as Monte Carlo method and heat-pressure model. In th...
متن کاملThe advantage of using a diode laser instead of a Q-switched laser in photoacoustic imaging of tissues
Photoacoustic (PA) imaging of biological tissues using laser diodes instead of conventional Q switched pulsed systems provides an attractive alternative for biomedical applications. However, the relatively low energy of laser diodes operating in the pulsed regime, results in generation of very weak acoustic waves, and low signal-to-noise ratio (SNR) of the detected signals. This problem can be ...
متن کاملForward and Adjoint Radiance Monte Carlo Models for Quantitative Photoacoustic Imaging
In quantitative photoacoustic imaging, the aim is to recover physiologically relevant tissue parameters such as chromophore concentrations or oxygen saturation. Obtaining accurate estimates is challenging due to the nonlinear relationship between the concentrations and the photoacoustic images. Nonlinear least squares inversions designed to tackle this problem require a model of light transport...
متن کاملInternal refractive index changes affect light transport in tissue
This investigation explores the effect of index of refraction, as an optical property, on light transport through optically turbid media. We describe a model of light propagation that incorporates the influence of refractive index mismatch at boundaries within a domain. We measure light transmission through turbid cylindrical phantoms with different distributions of refractive index. These dist...
متن کامل